Use of a continuous integration and deployment software to automate nuclear data V&V

David Brown

NNDC, Brookhaven National Laboratory

Cross Section Evaluation Working Group (CSEWG)

a passion for discovery

2/3 of BNL's NCSP Nuclear Data tasks are now fully automated

- Perform data verification of new NCSP evaluations and store them on GForge server (Q1, Q2, Q3, Q4)
- Perform QA of new NCSP covariance data (Q2, Q4)
- Update Atlas of Neutron Resonances (Q4)

Our scheme is so useful, NNDC seeking to automate many other tasks with same system

Benefits of automation are clear

- No waiting for assistance from processing code experts
- Extensive testing with minimum effort
 - Number of new commits verified
 - > 1 deuteron-incident evaluation
 - > 5 decay evaluations
 - > 111 neutron-incident evaluations
- High-quality evaluations due to extensive and frequent testing
- Evaluation QA anywhere, anytime through Web at http://www.nndc.bnl.gov/endf/b7.dev/qa/
- Timely feedback on every change enables easier ID and correction of deficiencies

Expected Result

- Expedited submission of evaluations for CSEWG review
- Faster release of new evaluated data libraries

Brookhave

VEN

Why did we do it?

What's the Problem?

- Data verification and data validation (V&V) is tedious, so evaluators usually "forget"
- Not all evaluators know how to run the commonly used V&V codes
- Evaluators may have different versions (read: different bugs) of the same V&V code thereby producing different results

What's the solution?

 A highly automated, modular V&V system publicly accessible to evaluators

<u>Automated Data Verification and Assurance for Nuclear Calculations Enhancement (ADVANCE)</u>

Outline

- ***** Motivation
- **Benefits of ADVANCE**
- The ADVANCE ND/QA System
 ADVANCE System Architecture
 ADVANCE Process Flow
 Future Directions

ADVANCE: The ENDF Continuous Integration System

ENDF/B Development

The development version of the Evaluated Nuclear Data File (ENDF/B)

Latest Updates

sublib_release_notes: neutrons Report sublib_release_notes on neutrons generated. The result was a SUCCESS 2013-04-30 16:57:39.661872

sublib_html: neutrons

Report sublib_html on neutrons generated. The result was a SUCCESS 2013-04-30 16:52:01.501892

sublib_release_notes: neutrons Report sublib_release_notes on neutrons generated. The result was a SUCCESS 2013-04-30 15:41:29.746913

Decay

Charged particles

Photonuclear

Atomic

Neutrons sublibraries

Standards Sublibrary

Neutrons Sublibrary

ENDF/B Development Library

General Information:

ENDF sublib designator: 10

Revision Number: 611M

Last Modified Revision: 532:611M

Build Status:

Build status: ERROR

Build time: 2013-04-30 16:52:01.394282

Listfile: neutrons.list

Release Notes: neutrons-releaseNotes.pdf

GForge Links:

Browse SVN

Browse sublibrary tracker

Latest Updates

sublib_release_notes: neutrons Report sublib_release_notes on neutrons generated. The result was a SUCCESS

2013-04-30 16:57:39.661872

evaluation_summary: n-098_Cf_251.endf Code evaluation_summary completed run on n-098_Cf_251.endf. The result was a SUCCESS

2013-04-30 16:52:41.503573

sublib_html: neutrons

Report sublib_html on neutrons generated. The

result was a SUCCESS

2013-04-30 16:52:01.501892

eriodic	Table	Ma	aterial L	lst													
A								Х									2 He
3	4 Be											5 B	É	Ž,	å	P F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	占	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
韶	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe

Brookhaven Science Associates

NATIONAL LABORATORY

Build status: ERROF Report sublib_html on neutrons generated. The result was a SUCCESS 2013-04-30 16:52:01.501892

Build time: 2013-04-30 16:52:01.394282

Listfile: neutrons.list

Release Notes: neutrons-releaseNotes.pdf

Forge Links:

Browse SVN

Status	Material	MAT #	Revision #	# Tests	# Failures	# Errors	Lab.	Date			Autl	hors			
	236 Pu	9428	603	756	0	44	JAEA+	FEB10	O.Iwamoto, T.Nakagawa, et al.						
	237 Pu	9431	603	1398	0	136	JAEA+	FEB10	0.lw	.Iwamoto, T.Nakagawa, et al.			H		
	238 Pu	9434	597	1004	0	180	LANL	SEP10	YOUNG, TALOU, KAWANO, KAHLER, CHADWIC Young, Chadwick, MacFarlane, Derrien					1 N	
	239 Pu	9437	591	1508	0	68	LANL	SEP06							
	240 Pu	9440	532	1298	0	216	LANL	SEP09	YOUN		U, CHAD	WICK, KA			
	241 Pu		532	924	0	10	ORNL	ОСТ03	3 L.Weston, R.Wright, H.Derrien , et al. 1 S.F. MUGHABGHAB , et al. O.Iwamoto, etal						
	242 Pu	9446	603	1268	0	108	BNL+JAEA	AUG11					8		
	243 Pu		597	536	0	24	SRL, LLNL	JUL76					8	5 X 8 R	
	244 Pu		603	846	0	60	JAEA+	FEB10							
	246 Pu	9458	603	850	0	60	JAEA+	FEB10							1
														/s	
	anoids)	57 La	58 Ce	59 E	60 61 Nd Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	
** <u>Actinides</u> (<u>Actinoids</u>)		89 Ac	90 Th	91 9 Pa	92 93 U Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	

Image of plutonium from http://imagesof-elements.com/

239 Pu

Neutrons Sublibrary

- General Information:
 - ENDF MAT designator: 9437
 - Evaluated by Young, Chadwick, MacFarlane, Derrien (LANL), SEP06
 - Natural abundance: 0.0 +/- 0.0 %
 - Check out Wikipedia's entry for plutonium
- Revision Number: 611M
- Last Modified Revision: 532:611M
- Build Status:
 - Build status: ERROR (Submit tracker item)
 - Build time: 2013-04-30 06:17:38.108808
- GForge Links:

0

STANEF

0

0

- Browse SVN
- View current revision
- Download current revision

Latest Updates

evaluation_summary: n-094_Pu_239.endf Code evaluation_summary completed run on n-094_Pu_239.endf. The result was a SUCCESS 2013-04-30 06:17:39.392055

njoy2012: n-094_Pu_239.endf Code njoy2012 completed run on n-094_Pu_239.endf. The result was a ERROR 2013-04-30 06:17:36.872836

Inter: n-094_Pu_239.endf Code inter completed run on n-094_Pu_239.endf. The result was a SUCCESS 2013-04-30 06:10:24.995505

ENDF Overview Code Results ACE Overview Integral Quantities **Cross Section Plots** Summary of all tests on this evaluation. Use checking code button to show/hide errors. Code Files Status Run Tests Failures time Errors (sec) STAN 0 0 0 31.533 STN File

29.316

ENDF Overview

ACE Overview

Integral Quantities

Cross Section Plots

Comparison between cross section data in this ENDF file and data retrieved from EXFOR

Aggregate channels:

Regular channels:

ADVANCE Version 0.7 (svn rev: 669)

Codes used in ADVANCE version 0.7

NNDC checking codes

- STAN
- STANEF
- CHECKR
- FIZCON
- PSYCHE

PREPRO

- LINEAR
- RECENT
- SIGMA1

NJOY2012 (upgraded from NJOY99)

- grouping, heating, checking
- ACE file

Fudge-4.0 (upgraded from Fudge-2.0)

- checking
- cross section plotting
- xml/html5 overview

Other Codes

- INTER: integral quantities
- ACELST: ACE file overview
- ENDF2HTM: ENDF overview
- x4i: EXFOR data for plotting

Outline

- ***** Motivation
- **Benefits of ADVANCE**
- * The ADVANCE ND/QA System
- *** ADVANCE System Architecture**
- *** ADVANCE Process Flow**Future Directions

ADVANCE System Architecture

- GForge Server as the versioning system (Subversion).
- Each commit to ENDF repository triggers data verification
- Results automatically posted on NNDC Web server

BROOKHAVEN NATIONAL LABORATORY

The ADVANCE ND/QA System (continued)

Why ControlTier?

- Robust and reliable
- Cost-free: Good for NNDC's tight budget
- Open-source: Can change system code
- Platform independent: 100% Java
- Most complete platform:
 - Continuous integration + continuous deployment
- Highly scalable: Add servers + clients as needed

ADVANCE Process FlowData Verification

Code Dependencies

- A code may depend on output of another code. Thus, a code may not begin processing until the immediate preceding code completes.
- If new commit does not modify input file to a code, then the code and its dependent codes are not executed.

Brook

Outline

- * Motivation
- **Benefits of ADVANCE**
- * The ADVANCE ND/QA System
- *** ADVANCE System Architecture**
- ***** ADVANCE Process Flow
- ***** Future Directions

Rest of FY13 plans (in addition to ENDF upkeep)

- More reports: Plots of integral quantities (MACS, RI, Cf spectrum ave.) Better energy balance report Covariance QA report Full library tarballs (ACE, gnd, gendf) More processing codes: PREPRO/sigma1, sixpack CALENDF Fudge improvements NJOY improvements
- □ Database of errors:
 ✓ processing code error mining
 □ regressions
 - regressions
- Notifications
 - **M** RSS Feed
 - Emails
- Help pages
- Unit tests/docs
- About ADVANCE pages
- An ADVANCE paper
- Prepare for benchmarking?

BROOKHAVEN NATIONAL LABORATORY

Next logical step: automate simulation of critical assemblies and other benchmarks

- Criticality benchmarks are already the core of our data testing regimen
- Many other tests check things of importance to NCSP
 - Reaction rates in irradiated foils target individual reactions
 - SINBAD shielding benchmarks can be used to benchmark decay/ activation data

Current testing is human-driven and ad-hoc:

- We often test outdated libraries (ENDF/B-V??)
- We rerun same tests (do we need to run JEZEBEL again?)
- We often don't run tests because of lack of resources: models, codes computing and/or manpower

Automated benchmarking is one of NCSP's 5 year goals

Opportunities

- cnp_test_suite release
- Transport code and test suite donations
 - COG release
 - COG suite release
 - MCNP6 release
 - Mosteller suite of 119 tests
 - BNL 1D Sn tests
- NNDC cluster upgrade: cluster size to double to 184 Intel Xeon nodes
- ADVANCE master node upgrade

Challenges

- NNDC webserver upgrade: may force adoption of web content management system instead of static web pages for reports
- ControlTier project ended: in long term must switch control system to either RunDeck or BuildBot or similar

We would like to develop a meaningful requirements documentation

BROOKHAVEN NATIONAL LABORATORY

Gathering requirements for next major release of ADVANCE

- More processing codes: AMPX
- Local (NNDC) benchmarking
 - Using MCNP6, ANISN, TWOTRAN and COG
- Hooks for remote benchmarking
 - LLNL CNP group collaboration
- Try/accept functionality (try an evaluation before committing to GForge)

- Better notifications
- CMS for better report management
- Comments subsystem
- Better functionality for CI/CD for non-data projects (e.g. EMPIRE)
- Open source release

What else?

BROOKHAVEN NATIONAL LABORATORY

Acknowledgments

Many thanks to C. Mattoon (LLNL), B. Beck (LLNL), N. Summers (LLNL) and M.-A. Descalle (LLNL) for the advice and valuable assistance they provided especially at the early stage of the ADVANCE project and for providing us with LLNL's cnp_test_suite package.

D. Heinrichs and C. Lee for preparing COG for general release.

